33 research outputs found

    Identifying barriers in telesurgery by studying current team practices in robot-assisted surgery

    Get PDF
    This paper investigates challenges in current practices in robot-assisted surgery. In addition, by using the method of proxy technology assessment, we provide insights into the current barriers to wider application of robot-assisted telesurgery, where the surgeon and console are physically remote from the patient and operating team. Research in this field has focused on the financial and technological constraints that limit such application; less has been done to clarify the complex dynamics of an operating team that traditionally works in close symbiosis. Results suggest that there are implications for working practices in transitioning from traditional robot-assisted surgery to remote robotic surgery that need to be addressed, such as possible communication problems which might have a negative impact on patient outcomes

    Dried yeast cell walls high in beta-glucan and mannan-oligosaccharides positively affect microbial composition and activity in the canine gastrointestinal tract in vitro

    Get PDF
    The outer cell wall of yeast is characterized by high levels of beta-glucans and mannan-oligosaccharides (MOS), which have been linked with beneficial effects on intestinal health and immune status in dogs. In this study, a standardized in vitro simulation of the canine gastrointestinal tract (Simulator of the Canine Intestinal Microbial Ecosystem; SCIME) was used to evaluate the effect of a Saccharomyces cerevisiae-based product, consisting of 27.5% beta-glucans and 22.5% MOS, on the activity (as assessed by measurement of fermentative metabolites) and composition (as assessed by 16S-targeted Illumina sequencing) of canine intestinal microbiota. The S. cerevisiae-based product was tested at three different dosages, i.e., 0.5, 1.0, and 2.0 g/d. A dose-dependent fermentation pattern was observed along the entire length of the colon, as shown by the increased production of the health-related acetate, propionate, and butyrate for the three concentrations tested (0.5, 1.0, and 2.0 g/d). A consistent finding for all three tested concentrations was the increased propionate production (P < 0.05) in the simulated proximal and distal colon. These changes in terms of fermentative metabolites could be linked to specific microbial alterations at the family level, such as the specific stimulation of the propionate-producing families Porphyromonadaceae and Prevotellaceae upon in vitro exposure to the S. cerevisiae-based product. Other consistent changes in community composition upon repeated exposure included the decrease in the Enterobacteriaceae and the Fusobacteriaceae families, which both contain several potentially opportunistic pathogens. Altogether, the generated data support a possible health-promoting role of a product high in beta-glucans and MOS when supplemented to the dogs' diet

    A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro

    Get PDF
    A standardized in vitro simulation of the human gastrointestinal tract (M-SHIME (R)) was used to assess the effect of repeated daily administration of a synbiotic formulation, containing five spore-forming Bacillus strains and a prebiotic fiber blend, on the microbial activity and composition of three simulated human subjects. Firstly, while confirming recent findings, deeper phylogenetic insight was obtained in the resident M-SHIME (R) microbiota, demonstrating that the model maintains a diverse and representative, colon region-specific luminal and mucosal microbial community. Supplementation of the synbiotic concept increased microbial diversity in the distal colon areas, whereas specific enhancement of Bacillaceae levels was observed in the ascending colon suggesting a successful engraftment of the Bacillus spores, which probably resulted in a stimulatory effect on, among others, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Tannerellaceae and Faecalibacterium prausnitzii contributing directly or indirectly to stimulation of acetate, propionate and butyrate production. When compared with a previous study investigating the Bacillus strains, the generated data suggest a synergistic effect on the intestinal microbiota for the synbiotic formulation. Given the fact that the probiotic strains have been shown to impact post-prandial metabolic endotoxemia in human individuals, it might be interesting to further investigate the efficacy of the synbiotic concept in protecting against obesity-related disorders

    An ontology co-design method for the co-creation of a continuous care ontology

    Get PDF
    Ontology engineering methodologies tend to emphasize the role of the knowledge engineer or require a very active role of domain experts. In this paper, a participatory ontology engineering method is described that holds the middle ground between these two 'extremes'. After thorough ethnographic research, an interdisciplinary group of domain experts closely interacted with ontology engineers and social scientists in a series of workshops. Once a preliminary ontology was developed, a dynamic care request system was built using the ontology. Additional workshops were organized involving a broader group of domain experts to ensure the applicability of the ontology across continuous care settings. The proposed method successfully actively engaged domain experts in constructing the ontology, without overburdening them. Its applicability is illustrated by presenting the co-created continuous care ontology. The lessons learned during the design and execution of the approach are also presented

    Fructans with varying degree of polymerization enhance the selective growth of Bifidobacterium animalis subsp. lactis BB-12 in the human gut microbiome in vitro

    Get PDF
    Synbiotics aim to improve gastrointestinal health by combining pre- and probiotics. This study evaluated combinations of Bifidobacterium animalis subsp. lactis BB-12 with seven fructans: oligofructoses (OF1-OF2; low degree of polymerization (DP)), inulins (IN1-IN2-IN3; high DP) and OF/IN mixtures (OF/IN1-OF/IN2). During monoculture incubations, all fructans were fermented by BB-12 as followed from increased BB-12 numbers and increased acetate and lactate concentrations, with most pronounced fermentation for low DP fructans (OF1-OF2). Further, short-term colonic incubations for three human donors revealed that also in presence of a complex microbiota, all fructans (particularly OF1) consistently selectively enhanced the growth of BB-12. While each fructan as such already increased Bifidobacteriaceae numbers with 0.94-1.26 log(cells/mL), BB-12 co-supplementation additionally increased Bifidobacteriaceae with 0.17-0.46 log(cells/mL). Further, when co-supplemented with fructans, BB-12 decreased Enterobacteriaceae numbers (significant except for IN1-IN3). At metabolic level, all fructans decreased pH due to increased acetate and lactate production, while OF/IN2-IN1-IN2-IN3 also stimulated propionate and butyrate production. BB-12 co-supplementation further increased propionate and butyrate for OF/IN2-IN3 and IN1-IN2, respectively. Overall, combinations of BB-12 with fructans are promising synbiotic concepts, likely due to intracellular consumption of low DP-fructans by BB-12 (either present in starting product or released upon fermentation by indigenous microbes), thereby enhancing effects of the co-administered fructan

    The OCareCloudS project: toward organizing care through trusted cloud services

    Get PDF
    The increasing elderly population and the shift from acute to chronic illness makes it difficult to care for people in hospitals and rest homes. Moreover, elderly people, if given a choice, want to stay at home as long as possible. In this article, the methodologies to develop a cloud-based semantic system, offering valuable information and knowledge-based services, are presented. The information and services are related to the different personal living hemispheres of the patient, namely the daily care-related needs, the social needs and the daily life assistance. Ontologies are used to facilitate the integration, analysis, aggregation and efficient use of all the available data in the cloud. By using an interdisciplinary research approach, where user researchers, (ontology) engineers, researchers and domain stakeholders are at the forefront, a platform can be developed of great added value for the patients that want to grow old in their own home and for their caregivers

    Development and validation of the simulator of the Canine Intestinal Microbial Ecosystem (SCIME)

    Get PDF
    Whereas a wide variety of in vitro models have been developed and validated to assess the effect of specific food ingredients on the human gut microbiome, such models have only been developed and applied to a limited extent for companion animals. Since the use of pre- and probiotics to improve gut health is an emerging research topic in the field of companion animals and as dogs are often used as laboratory animals in developing and testing of pharmaceuticals, the current study aimed to establish an adequate canine in vitro model. This consisted of a four-stage reactor composed of a stomach and small intestinal compartment followed by a proximal and distal colon. This semi-continuous gastrointestinal tract model allowed a long-term, region-dependent, and pH-controlled simulation of the colon-associated microbial community of dogs. Upon reaching a functional steady state, the simulated canine microbial community composition proved to be representative of the in vivo situation. Indeed, the predominant bacterial phyla present in the in vitro proximal and distal colon corresponded with the main bacterial phyla detected in the fecal material of the dogs, resulting in an average community composition along the simulated canine gastrointestinal tract of 50.5% Firmicutes, 34.5% Bacteroidetes, 7.4% Fusobacteria, 4.9% Actinobacteria, and 2.7% Proteobacteria. A parallel in vivo-in vitro comparison assessing the effects of fructooligosaccharides (FOS) on the canine microbial community composition showed a consistent stimulation of Lactobacillus concentrations in the in vivo fecal samples as well as in the in vitro canine gut model. Furthermore, the in vitro platform provided additional insights about the prebiotic effect of FOS supplementation of dogs, such as a reduced abundance of Megamonas spp. which are only present in very low abundance in in vivo fecal samples, indicating an interesting application potential of the developed canine in vitro model in research related to gastrointestinal health of dogs

    A randomized, placebo-controlled trial investigating the acute and chronic benefits of American Ginseng (Cereboost®) on mood and cognition in healthy young adults, including in vitro investigation of gut microbiota changes as a possible mechanism of action

    Get PDF
    Purpose: Cereboost®, an American ginseng extract, has shown improved short-term memory and attention/alertness in healthy young and middle-aged individuals, potentially via modulation of the gut microbiome and upregulation of neurotransmitters such as acetylcholine. Here, we explored the effects of Cereboost® on cognition and mood in the first 6 hours post-intervention (acute), after 2 weeks daily supplementation (chronic), and whether 2 weeks daily supplementation altered the response to a single acute dose (acute-on-chronic). A concurrent in vitro study evaluated effects of repeated Cereboost® administration on human gut microbiota. Methods: Cognitive effects of Cereboost® were assessed using a double-blind, randomized, placebo-controlled clinical trial, with 61 healthy young adults. Modulation of the gut microbiome was concurrently modelled using the Simulator of the Human Microbial Ecosystem (SHIME®), using a young adult donor. Results: Consistent with previous findings, Cereboost® improved working memory and attention during the immediate postprandial period; effects that were amplified following two weeks treatment (acute-on-chronic) compared to acute testing alone. Chronic supplementation improved cognition on an acetylcholine-sensitive attention task and improved mental fatigue and self-assurance aspects of mood. The parallel in vitro study revealed significantly increased acetate, propionate, and butyrate levels in simulated proximal and distal colon regions, linked with observed increases in Akkermansia muciniphila and Lactobacillus. Conclusion: This study confirmed the promising effects of Cereboost® on cognitive function and mood, while suggesting a possible link to alterations of the gut microbiome and modulation of acetylcholine. Further studies will be required to unravel the underlying mechanisms that are involved
    corecore